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The coincidence-site-lattice theory of grain boundaries has been applied to simple two-phase boundaries. 
Symmetric and unsymmetric tilt boundaries, pure twist boundaries and unrotated and untwisted bound- 
aries have all been considered. It has been shown that each type of boundary can be described in terms 
of a characteristic coincidence-site lattice. In addition, the dislocation content within the interphase 
boundaries has been defined in terms of Burgers circuits described with respect to the original crystal 
lattices in the new coincidence-site lattices. 

Introduction 

It was first proposed that a coherent boundary be- 
tween two phases of differing lattice constant could be 
described in terms of interface dislocations (Mar- 
cinkowski, 1970a). Those interface dislocations were 
originally referred to as virtual dislocations, since they 
appeared then to be fundamentally different from 
crystal-lattice dislocations. The subsequent develop- 
ment of the coincidence-site-lattice theory of grain 
boundaries however showed this not to be the case 
(Marcinkowski & Sadananda, 1973). 

Although a number of preliminary treatments of 
interface dislocations have been presented (Marcin- 
kowski, 1970a, b; Marcinkowski & Tseng, 1970; 
Marcinkowski, 1972; Sadananda & Marcinkowski, 
1974a; Cullen, Marcinkowski & Das, 1973), none has 
yet been extensive. It is the purpose of the present 
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effort to carry out the first of such studies. The presen- 
tation will be pedagogic in nature, relying heavily on 
simple geometric models. A fuller mathematical 
analysis will follow in a subsequent publication (Mar- 
cinkowski & Kr6ner, 1975). The analysis will be con- 
fined to what is perhaps the simplest of all two-phase 
boundaries in which the two phases A and B possess 
the same simple cubic structures but have differing 
interplanar spacings a0 and b0 such as shown in Fig. 
l(a). The two-phase interface may be visualized as 
comprised of a parallel array of edge-type interface 
dislocations (shown dotted) associated with each 
interatomic spacing in which the Burgers vector of each 
interface dislocation is given by 

[bml=ao-bo . (1) 

For the particular case shown in Fig. l(a), b0=~oa0. 
It is apparent that the array of interface dislocations 

shown in Fig. l(a) generate long-range stresses In 
order that these stresses be reduced, an array of edge- 
type crystal-lattice dislocations of strength [bcL[=b0 
can be introduced into the boundary as shown by the 
solid dislocation symbols in Fig. l(b). It is a simple 
matter to show that the long-range stresses are fully 
compensated when the spacing between the crystal- 
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lattice dislocations R is given by (Cullen, Marcinkow- 
ski & Das, 1973) 

R =nao (2a) 
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Fig. 1. (a) Simple boundary between two coherent phases 
described in terms of interface dislocations. (b) Same bound- 
ary as in (a) but which now contains misfit dislocations. 
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Fig. 2. Same interphase boundary as that shown in Fig. l(b) 
but with the interphase dislocations now coalesced on the 
crystal-lattice dislocations. (a) Case where coalesence occurs 
equally from both sides of crystal-lattice dislocation. (b) Case 
where coalesence occurs entirely from the left of each crystal- 
lattice dislocation. 

where n is the number of interatomic spacings measured 
in terms of lattice A or by 

R = Nbo (2b) 
where 

U =  n + l , (2c) 

where N is the number of interatomic spacings 
measured in terms of lattice B. In the specific case of 
Fig. l(b), n = 9 .  

As the following sections will show, interface dis- 
locations play the same role in two-phase interfaces as 
grain boundary dislocations (GBD) play in grain 
boundaries. For this reason therefore interface disloca- 
tions will henceforth be termed interphase boundary 
dislocations (IBD), while the misfit dislocations, which 
play the role of crystal lattice dislocations (CLD) in 
grain boundaries, will also be termed (CLD) in the 
case of two phase interfaces. 

Configuration of interphase boundary dislocations 
within the interface 

For simplicity, Fig. l(b) shows the IBD to be arranged 
uniformly. In reality however this uniform array is 
expected to be significantly perturbed by the CLD 
which possess much larger Burgers vectors than the 
IBD. More specifically, the IBD are expected to be 
drawn towards the CLD, and in fact undergo mutual 
annihilation. The results of this annihilation are 
shown by the interface configurations of Figs. 2(a) and 
2(b). In the case of Fig. 2(a), the IBD are drawn equally 
from both sides of each CLD, i.e. four from each side, 
while in the case of Fig. 2(b), all eight IBD lying 
toward the left of each CLD are drawn coincidentally 
toward each CLD. Except for the small ledges formed 
at both surfaces of Fig. 2(b), the interphase configura- 
tions in Figs. 2(a) and 2(b) are identical. It is apparent 
that each of the IBD shown in these two figures now 
have Burgers vectors given by 

nbm = 9bin = - bcL. (3) 

Note that since there is complete annihilation between 
all of the IBD and CLD in Figs. 2(a) and 2(b), no 
elastic distortions remain at the interface• On the 
other hand, the corresponding planes in phases A and 
B are no longer continuous across the interface, but 
instead are offset from one another. These offsets may 
be considered analogous to stacking faults in a single 
phase, with the exception that the fault energy is now 
a function of position along the fault plane since the 
magnitude of the offsets varies along the interphase 
boundary. 

It is a simple matter to speculate on the role of the 
faults in the interphase boundary of Fig. 2. In partic- 
ular, they will act to resist the motion of the IBD, 
shown in Fig. 1 to the CLD. The net result will be a 
IBD-CLD configuration intermediate between that 
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depicted in Figs. 1 and 2 depending upon the stacking- 
fault energy. As is usually the case, it is extremely 
difficult to calculate the stacking-fault energies asso- 
ciated with the interfaces of Fig. 2, since such calcula- 
tions depend upon the nature of the bonding across the 
interface. In general however it is expected that the IBD 
will be clustered about the CLD, the cluster becoming 
tighter as the stacking-fault energy decreases. 

It might be expected that in the case where the elastic 
constants between the two phases are different from 
one another that the effective Burgers vectors of the 
IBD and CLD would be altered. Such is indeed the  
case, and such alteration requires the superposition of 
image forces (Hirth & Lothe, 1968; Weertman & 
Weertman, 1964). However since both types of disloca- 
tions lie entirely within the interface, their Burgers 
vectors are altered by the same factor, so that equation 
(3) still obtains. The relationship b e t w e e n  the  number 
of IBD and CLD required for complete interphase 
boundary compensation is thus seen to be a geometric 
property, independent of the particular physical pro- 
perties of the crystal. 

Coinc idence - s i t e - la t t i ce  representat ion  
of  an interphase  boundary  

The interphase boundaries discussed thus far can also 
be represented in terms of the coincidence-site-lattice 
model which has been of great success in describing 
grain boundaries (Marcinkowski & Sadananda, 1973; 
Marcinkowski, Sadananda & Tseng, 1973; Sadananda 
& Marcinkowski, 1974b). This is most conveniently 
done by referring to the vertical interphase boundary 
in Fig. 3 in which b0 = ~a0. The boundary is seen to be 
fully compensated and stress free similar to that shown 
in Fig. 2(a). The open circles correspond to coincidence 
sites within the boundary, i .e.  points at which atom 
sites in phases A and B coincide. 

It is now possible to construct unit cells associated 
with the interphase boundary of Fig. 3 as illustrated in 
Fig. 4. One unit cell is drawn with respect to the ,4 
phase and another with respect to the B phase with the 
boundary separating the two. It is apparent that both 
unit cells are of identical edge length a0c given by 

ao¢ = R = nao = N b ¢  (4) 

and will be termed coincidence-site-lattice unit cells. 
The values of N and n are related by equation 2 ( c ) .  It 
is also to be noted that each of the coincidence-site- 
lattice unit cells can be subdivided into sublattices in 
the manner shown by the dashed lines in Fig. 4. For 
clarity, the dashed lines are drawn in only one direction 
within the top and bottom portions of the coincidence- 
site-lattice unit cells. Each sublattice unit cell has an 
edge length given by a0¢s where it is apparent that 

a0 b0 
a°¢s = - N I - -  n 

In the case of Fig. 4, n = 4  and N = 5 .  Equations (1), 
(2c) and (5) when combined give 

Ib, BI =a0cs • (6) 

The physical meaning of the IPB dislocation now be- 
comes clear in terms of the quantity a0cs in equation (6) 
when it is realized that a coherent interphase boundary 
of the type shown in Fig. l(a) may be viewed in terms 
of an extra half plane of magnitude aoCs spaced uni- 
formly within each crystal-lattice unit cell of the A 
phase. One such extra half plane is shown within a 
crystal lattice unit cell by the shaded area in Fig. 5 
based upon the interphase boundary shown in Fig. 4. 
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Fig.  3. Fu l ly  s t ress-free i n t e r p h a s e  b o u n d a r y .  
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Fig.  4. Pa i r  o f  co inc idence-s i t e - l a t t i ce  un i t  cells a s soc i a t ed  wi th  
the interphase boundary shown in Fig. 3. 
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(5)  Fig.  5. I n t e r p r e t a t i o n  o f  the  i n t e r p h a s e  b o u n d a r y  d i s l oc a t i on  

in t e r m s  o f  the  co inc idence-s i t e - l a t t i ce  sub la t t i ce .  
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I n t e r p h a s e  t i l t  b o u n d a r i e s  

As for the case of a grain boundary in a single-phase 
material, it is possible to construct a symmetric tilt 
boundary between two different phases. In particular, 
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Fig. 6. A 53.1 ° symmetric interphase tilt boundary. 
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Fig. 7. Further  subdivision of the coincidence-site-lattice unit 
cell associated with the symmetric interphase boundary of 
Fig. 6 into a smaller sublattice. 
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i 
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Fig .  8. Pa i r  o f  coincidence-site-lattice u n i t  cel ls associated 
with the 53.1 ° symmetric interphase boundary shown in 
Fig. 6. 

consider the counterclockwise and clockwise rotations 
of phases A and B respectively shown in Fig. 3 by 0/2 
with respect to the vertical interphase boundary. If 0 
is chosen as 53.1 °, the symmetric tilt boundary of Fig. 6 
obtains. It will be noted that each phase possesses its 
own characteristic coincidence-site lattice (Marcinkow- 
ski, Sadananda & Tseng, 1973; Marcinkowski & 
Sadananda, 1975) which can be characterized by the 
following coincidence-site-lattice relationships. For 
phase A 

Lao L 
tan 0 / 2 -  - -  - (7a) 

a0 M 

while for phase B 

tan 0 / 2 -  Lbo _ L (7b) 
M b o  M " 

The meanings of L and M can be discerned from 
inspection of Fig. 7 where it can be seen that they may 
be thought of as the number of dislocations of strength 
a0 or b0 which have moved into the boundary over 
glide planes with normals Xz a or Xz ~ respectively, 
separated M atom spacings apart. The position of each 
one of these dislocations in Fig. 6 is seen to simply 
represent the terminus of an extra half plane with 
normal X(  or X~ within either phase A or B respec- 
tively. For the particular case of Figs. 6 and 7, L = 1 
while M = 2 ,  from which equations (7) both give 0 =  
53.1 ° . 

It is clear from Figs. 6 and 7 that the coincidence- 
site lattices for each grain are of different size, i .e.,  aao~ 
for phase A and ao~ for phase 1B, and thus do not by 
themselves correspond to the coincidence-site lattice 
common to the entire grain boundary. It can be seen 
however from Fig. 6 that such a common coincidence- 
site lattice can be obtained by combining four coin- 
cidence-site lattices associated with phase A with five 
coincidence-site lattices associated with phase B along 
the two-phase boundary. A more complete representa- 
tion of a pair of such coincidence-site-lattice unit cells 
of edge length a0c can be seen in Fig. 8. Comparison 
of Figs. 6 and 8 with Figs. 3 and 4 respectively show 
that aoa~ and ao~c for a symmetric tilt-type two-phase 
boundary play the same role as a0 and b0 for a corre- 
sponding two-phase boundary in which 0=0 .  Thus it 
is possible to use n and N given by equation (2c) for 
the relative number of aoao and ao~ type unit cells lying 
along the symmetric tilt boundary. Furthermore, in 
analogy with equation (4) 

aoc = naao¢ = Nano¢ . (8) 

The dislocations which compensate the misfit parallel 
to the interphase boundary due to the differences in 
aoac and aoBc are shown by the CLD in Fig. 6 which lie 
within phase B and which are the termini for the extra 
half planes whose normals are along X~. More will be 
said about these particular dislocations when the ques- 
tion of the Burgers circuit is taken up in a subsequent 
section. 
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Fig. 8 shows that the coincidence-site lattices with 
unit-cell edges ao~ and a~¢ can be further subdivided 
into sublattices with unit cells aoCsa and aoBc~ respectively. 
For clarity, the subdivision has been shown only in 
terms of a horizontal set of dashed lines. The vertical 
lines, which would have completed the subdivision, 
have been omitted. It has already been shown (Marcin- 
kowski & Sadananda, 1975) that 

aoaes= a ~ e  (L 2 + M2 ) (9a) 

while 

B _ a~¢ ( 9 b )  ao~s- (L z + M z  ) • 

Fig. 7 also shows that a0 associated with the entire two- 
phase symmetric tilt boundary in Fig. 6 can also be 
subdivided into a distinct sublattice (dashed lines) of 
unit-cell edge given by aoc~. From this figure it is 
apparent that 

a0cs = a~c, B -ao~s (10a) 

which when combined with equation (9) gives 

aaoc( N -  n) 
a0~,= N(L2 + M2 ) . (10b) 

Upon substitution of the integers appropriate to Fig. 
7, i.e. N = 5 ,  n=4 ,  L = l  and M = 2 ,  it is found that 
a0¢s = aoaJ25, in precise agreement with the construction 
in Fig. 7. 

It is now possible to employ the coincidence-site- 
lattice unit cells a0: associated with the two-phase tilt 
boundary of Fig. 6 to construct a stepped asymmetric 
tilt boundary of any angle in which each stepped seg- 
ment consists of an identical symmetric boundary 
(Marcinkowski & Sadananda, 1973, 1975). The 
straight counterparts of these asymmetric boundaries 
can also be readily constructed and will be considered 
in more detail in the following section. 

The symmetric two-phase tilt boundary illustrated 
in Fig. 6 is surprisingly similar to the asymmetric grain 
boundary associated with a single-phase material 
(Marcinkowski & Sadananda, 1973; Marcinkowski, 
Sadananda & Tseng, 1973). One such boundary is 
shown in Fig. 9 for 0=53.1 °. It is apparent that a 
characteristic coincidence-site lattice with edge length 
ao~¢ could be associated with grains ~ 1 and ~2.  How- 
ever it is also possible to choose a~oo as the unit cell length 

2 in grain ¢~ 1 and ao¢--a0 as the coincidence-site-lattice 
unit cell in grain ~2.  Clearly ~ - 2 aoc-5ao¢, and thus we 
have a situation resembling that given by Fig. 6 in 
which two types of coincidence-site-lattice unit cell 
may be associated with the boundary. This similarity 
will take on still greater significance when the Burgers 
circuit associated with a two-phase boundary is 
considered later on. 

In the application of the present coincidence-site- 
lattice theory to grain boundaries, it was shown that 
the grain boundary could be visualized in terms of 

grain-boundary dislocations comprised of various 
combinations of CLD from the two adjacent grains 
(Marcinkowski, Sadananda & Tseng, 1973). Likewise, 
in the present analysis of two-phase interfaces, it seems 
reasonable to extend this argument. In particular, 
equation (1) could be written for a more general IBD 
as 

bm = bcaL + bc~L (11 ) 

where bcaL and bc~L a r e  the Burgers vectors associated 
with the CLD of phases ,4 and B respectively and 
which have magnitudes given by a0 and b0 respectively. 

Before continuing further with equation (11), it is 
important to distinguish between two distinct types of 
IBD, which will be termed compensated and uncom- 
pensated respectively. Such designations were originally 
carried out for grain-boundary dislocations (Marcin- 
kowski & Sadananda, 1973). The IBD of Fig. 1 corre- 
spond to uncompensated dislocations of strength 

,4 B bm= bcL --  bcL = [hkl]aocs = [ 100]a0cs (12) 

where h,k ,  l are integers corresponding to the number 
of coincidence-site-sublattice unit cells measured along 
the X c, X c and Xa c axis common to the coincidence- 
site lattices as shown in Fig. 6. In Fig. 2(a), nine bm 
of strehgth given by equation (12) coalesce and be- 
come fully compensated by a CLD of strength [T00]b0. 
In a similar manner the uncompensated IBD corre- 
sponding to Fig. 5 may be written as bm=[010]a0¢s. 
Five of these combine with a CLD of strength [010]b0 
to produce the compensated interphase boundary of 
Fig. 3. Likewise if a pair of dislocations residing at 
each coincidence site within the interphase boundary 
of Fig. 6 were removed, there would remain an un- 
compensated IBD given by 

bm= b~:L + bCBL (13) 
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Fig. 9. A 53"1 ° asymmetric tilt boundary in a single-phase 
material. 
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which, with respect to the common c coordinate 
system, has x and y, i.e. 1 and 2 components, given by 

b~B = L(ao + bo) cos 0/2 (14a) 
and 

b2a = L(ao - bo) sin 0/2. (14b) 

From inspection of Fig. 7, equation (14) can be written 
as 

b~B = LM(aao~ + ao%) 
(L 2 + M2 ) (15a) 

and 
2 A 

b~B= L (ao~-a~o~) 
(L 2 + M2 ) (15b) 

which with the aid of equations (8), (9) and (10) give 

and 

biB= L M ( N + n )  
( N - n )  ao~s (16a) 

LZ(N-n)  
b28- ( N - b )  aocs. (16b) 

For the coincidence sites associated with the inter- 
phase boundary of Fig. 6 equation (16) becomes 
b|B= 18a0¢s and b2B= la0~s or more concisely 

bm= bcLA + b~ze = [ 18, 1, O]ao~. (17) 

With the exception of Fig. l(a), all of the interphase 
boundaries discussed thus far are fully compensated. 
Strictly speaking, fully compensated boundaries should 
be illustrated by combinations of dotted and solid 
dislocation symbols whose total Burgers vector is zero. 
For convenience however, all compensated interphase 
boundaries will be described only in terms of the 
solid symbol, whereas when they become uncom- 
pensated, the dotted symbol will be employed. It has 
also been shown that a fully compensated grain 
boundary is one in which the incomparability tensor H 
associated with it vanishes (Marcinkowski & Sadanan- 
da, 1975). The same reasoning seems also appropriate 
for a fully compensated interphase boundary. 

It will also be noted that b~a, as shown in equations 
(12) and (17), as well as any individual CLD lying 
within the interphase boundary, can always be re- 
presented in terms of a0¢s, the unit-cell edge associated 
with the complete coincidence-site lattice of the symme- 
tric interphase tilt boundary. In this respect it is also 
important to note that interphase-boundary deforma- 
tion associated with the passage of a dislocation from 
phase A to phase B in Fig. 6 may be written as 
(Sadananda & Marcinkowski, 1974a) 

b~a = bcaL-- bg:e = [210]a0~s. (18) 

Unlike the case of a single-phase material in which 

[bcaL[=[bc~e[ where the Burgers vector lies entirely 
within the grain boundary and is thus glissile, b~B given 
by equation (18) does not give rise to a glissile IBD. In 
addition, bib in equation (18) is obviously uncom- 
pensated. 

Burgers circuit associated with an interphase boundary 

It has already been shown that the Burgers circuit 
associated with a grain boundary in a single-phase 
material could be described as shown by the circuit of 
arrows in Fig. 9, each of magnitude a0 (Marcinkowski 
& Sadananda, 1973, 1975). The circuit is begun and 
ended on a coincidence site within the boundary by 
moving an equal number of steps, i.e. three in the case 
of Fig. 9 along equivalent directions in grains g~ 1 and 
#2 ,  i.e. X~ and XI. Note that the steps along X~ in 
grain ~¢2 just cancel one another. The closure failure 
is denoted by the number of excess steps and is shown 
by dotted arrows, i.e. four along X1 in grain #1 and 
two along X~ in grain #2.  In a similar manner, Burgers 
circuits can be constructed about the interphase 
boundaries illustrated in Figs. 3 and 6 where again the 
closure failure is represented by the dotted arrows 
which are seen to be directly related to the number, 
magnitude and direction of the Burgers vectors asso- 
ciated with the CLD within the boundary, e.g. in the 
case of Fig. 6, four dislocations along Xi ~, five along 
X~ and two along X~. 

The Burgers circuit associated with the interphase 
boundary of Fig. 6 could also be described in terms of 
the individual coincidence-site lattices aoac and ao~c 
corresponding to each of the two phases as shown in 
Fig. 8. In this particular case, its closure failure is seen 
to be one Burgers vector of strength a0c along Xf. 
Thus, the Burgers circuit of Fig. 8 is qualitatively the 
same as that given in Fig. 3 and serves only to describe 
the misfit parallel to the symmetric interphase tilt 
boundary. The tilt misfit 0 is not detected in the Burgers 
circuit of Fig. 8. It is also apparent that the Burgers 
circuit could also be described with respect to the sub- 
lattice unit cells of edge length a0cs in Figs. 4 and 7, 
however, it is obvious that the closure failure is always 
zero for fully compensated interphase boundaries of 
the type illustrated in these particular figures. Such 
however is not the case for the uncompensated inter- 
phase boundary such as illustrated in Fig. l(a) where 
the closure failure is some multiple number of a0cs units 
measured along X f. Similar arguments have also been 
used for compensated and uncompensated grain 
boundaries in single-phase materials (Marcinkowski & 
Sadananda, 1973). 

The final item of interest in this section is the two- 
phase counterpart of the asymmetric tilt boundary 
shown in Fig. 9. Such a boundary derived from Fig. 6 
is shown in Fig. 10. In particular, the boundary in Fig. 
10 may be derived from that in Fig. 6 by rotating the 
latter boundary counterclockwise by 0/2=53.1°/2 so 
that it now coincides with the X2 a direction of phase A. 
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This operation thus makes 0 in Fig. 10 equal to 36.9 °. 
A Burgers circuit taken within such a boundary, 
similar to that described with respect to Fig. 9, shows 
immediately that no closure failure exists parallel to the 
interphase boundary. Physically this means that the 
two phases exactly compensate one another in this 
particular orientation so that no misfit dislocations 
need be inserted into phase A. The only misfit disloca- 
tions required are those that give rise to the tilt of 
phase B with respect to phase A and these are all con- 
tained in phase B, as can be discerned from Fig. 10. 
Also of importance to note is the fact that the coin- 
cidence-site-lattice unit cell associated with the 36.9 ° 
asymmetric tilt boundary is smaller than that asso- 
ciated with the 53.1 o symmetric boundary and is due to 
the better fit between the two phases in the former case. 

Interphase  twist  boundaries  

Fig. 11 illustrates a pure twist boundary between two 
different phases A and B which is bounded by two 
symmetric tilt boundaries. The tilt boundary toward 
the right is clearly of the same kind as that shown in 
Fig. 6. A partial reproduction of Fig. 11 is shown in 
Fig. 12(a) in which the edge dislocations which com- 
prise the tilt portions of the interphase boundary are 
joined by their corresponding screw segments which 
are shown as straight lines. Strictly speaking, the screw 
segments associated with phase B are not of pure screw 
type, since the corresponding edge dislocations upon 
which they terminate do not lie on the same crystallo- 
graphic plane, but on adjacent planes separated by a 
distance b0. The reason for this is due to the insertion 
of additional dislocations required to accomodate the 
component of misfit parallel to the tilt boundaries. 

It is conceivable that, as in the case of pure twist 
boundaries (Marcinkowski & Dwarakadasa, 1973), 
some of the screw-type crystal-lattice dislocations 
could react with each other in pairs at their coinci- 
dence-site lattice points, in accordance with a reaction 
of the type given by equation (13), to generate the two 
distinct orthogonal IBD configurations shown in Figs. 
12(b) and 12(c). In the case of Fig. 12(b), the IBD out- 
line a unit cell of edge length a0c as described in Fig. 8, 
whereas in Fig. 12(c), the unit-cell size is much smaller 
and is in fact identical to that associated with the two- 
phase asymmetric tilt boundary shown in Fig. 10. In 
both cases however the Burgers vectors of the IBD are 
identical and are given by equation (17). Since bib is 
parallel to neither of the coincidence-site-lattice unit- 
cell edges associated with Figs. 12(b) and 12(c), [al- 
though this is almost the case in Fig. 12(b)] the disloca- 
tions are of mixed type, i.e. part screw and part edge. 
The edge segments produce no long-range stresses but 
in part compensate for the misfit between phases A 
and B across the twist boundary. Furthermore, the 
IBD of Figs. 12(b) and 12(c) account for only a portion 
of the grain-boundary structure since there are still 
unreacted CLD (not shown) within the interface. 

Whether one sees the grain-boundary structures 
shown by Figs. 12(a), 12(b), 12(c)or  combinations 
thereof, say when viewed within the electron micro- 
scope by transmission techniques, depends upon the 
nature of the contrast being employed (Marcinkowski, 
Tseng & Dwarakadasa, 1974a). If strain contrast is 
utilized, the particular structure observed will depend 
upon the degree of relaxation associated with each 
particular configuration, which in turn will depend 
upon the most stable energy configuration associated 
with that given dislocation configuration (Sadananda 
& Marcinkowski, 1974b). In this respect, it has been 
argued that those coincidence-site-lattice unit cells 
which are small will be energetically favorable (Boll- 
mann, 1970). This would mean that the dislocation 
configuration shown in Fig. 12(c) would be favored 
over that in Fig. 12(b), while the asymmetric tilt 
boundary of Fig. 10 would be favored over the corre- 
sponding symmetric one depicted in Fig. 6. 

In concluding the present study a number of general 
comments can be made. In the first place, all of the 
two-phase boundaries discussed in the previous sec- 
tions possessed rotation axes which were parallel to the 
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Fig. 10. A 36"9 ° asymmetric tilt boundary in a two-phase 
material. 
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Fig. 11. A 53.1 ° interphase twist boundary joined to a pair of 
symmetric interphase tilt boundaries. 
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(c) 

Fig. 12. (a) Interphasc twist boundary of Fig. 11 in which only 
the intcrphasc crystal-lattice dislocations arc visible. (b) 
Interphase twist boundary of Fig. 11 in which a set of inter- 
phase boundary dislocations associated with the larger of 
two possible coincidence-site lattices is visible. (c) Interphasc 
twist boundary of Fig. ii in which a set of interphasc 
boundary dislocations associated with the smaller of two 
possible coincidence-site lattices is visible. 

cube axis. In general, any crystallographic axis can be 
employed (Marcinkowski, Tseng & Dwarakadasa, 
1974b), but with a corresponding increase in the com- 
plexity of the analysis. 

Secondly, any coincidence-site lattice can be gener- 
ated from any other coincidence-site lattice in the same 
manner by which the coincidence-site lattices of the 
present analysis were described as being derived from 
the original crystal lattice. When using the coincidence- 
site-lattice unit cell as an initial reference lattice, the 
sublattice of the initial coincidence-site lattice is used 
to describe the Burgers vectors of the dislocations 
which carry the initial coincidence-site lattice to the 
final one (Marcinkowski & Sadananda, 1975). 

Summary and conclusions 

A coincidence-site-lattice theory of grain boundaries 
has been extended to include simple two-phase inter- 
faces, i.e. simple cubic structures of differing lattice 
constant. Interphase boundaries with no tilt or twist 
as well as those with both symmetric and asymmetric 
tilt as well as pure twist have been considered. It has 
been shown that a characteristic coincidence-site lattice 
can be associated with each particular type of boundary. 
The Burgers circuit about an interphase boundary has 
also been discussed in detail in terms of both the crys- 
tal lattice and coincidence-site lattice and is shown to 
adequately describe the dislocation content within the 
boundary. 

The present research effort was supported by The 
National Science Foundation under Grant No. 
GH-32262. 
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